Высказывания

Помощь в написании учебных работ
1500+ квалифицированных специалистов готовы вам помочь

При построении алгебры логики мы использовали функциональный подход. Однако, можно было бы построить эту алгебру конструктивно. Сначала определить объекты изучения (высказывания), ввести операции над этими объектами и изучить их свойства. Дадим формальные определения.

Высказыванием назовем повествовательное предложение относительно которого можно однозначно сказать истинно оно (значение И или 1) или ложно (значение Л или 0) в конкретный момент времени. Например, «5-простое число», «нажата клавиша «Esc»» и т.д. При помощи связок «не», «и», «или», «если,… то», «если и только если» (им отвечают операции «¬», «&», «v», «→», «∼» соответственно) можно построить более сложные высказывания (предложения). Так строится алгебра высказываний.

Для упрощения записи сложных высказываний вводится старшинство связок: «¬», «&», «v», «→», «∼», что помогает опустить лишние скобки.

Простые высказывания назовем пропозициональными переменными.

Введем понятие формулы.

1. Пропозициональные переменные являются формулами.

2. Если А, В формулы, то выражения ¬А, АВ, АvВ, А→В, А∼В являются формулами.

3. Формулами являются только выражения построенные в соответствии с пп.1 и 2.

Формула, принимающая значение И при всех значениях пропозициональных переменных называется тавтологией (или общезначимой), а формула, принимающая значение Л при всех значениях пропозициональных переменных называется противоречием (или невыполнимой).

Описание свойств алгебры высказываний аналогично описанию соответствующих функций в булевой алгебре и мы их опускаем.